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Setting a single crystal by non-equatorial X-ray reflexions. By A. L. Mackay, Birkbeck College
Research Laboratory, 21 Torrington Square, London W.C.1, England

(Received 24 May 1952 and in revised form 14 June 1952)

Normal X-ray methods of orienting a crystal to rotate
accurately about a principal symmetry axis fail when no
reflexions in the equatorial layer line can be identified.
A review of methods hitherto published is included in a
comprehensive paper by Jeffery (1949) but to meet a
particular problem, not covered by methods discussed
by Jeffery, a technique was developed which has a wider
applicability.

It was necessary to set a crystal of a lamellar mineral
to rotate accurately about the sixfold axis perpendicular
to the lamellae. From the external form this could easily
be done to within 5°, but as the hexagonal unit cell had
dimensions @ = 9-7 and ¢ = 133 A it was quite im-
possible to identify equatorial reflexions. As the row lines
were well separated the following method was used.

Three 5°-oscillation photographs were taken on the
same film at exactly 120° intervals of azimuth (using a
Unicam single-crystal X-ray goniometer). To enable
these three superimposed photographs to be distinguished,
the cassette was rotated by about 2° to each side of its
normal position so that the three equivalent row lines
appeared side by side. When exactly set to rotate about
the hexad axis, corresponding features on the three row
lines lie at the same distance from the equator of the
photograph, but when mis-set their relative displace-
ments give the corrections necessary.

Suppose «,, x, and «, were the angular distances of
three equivalent reciprocal-lattice vectors from the axis
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of rotation. The distances y,,y, and y, of the corre-
sponding reflexions from an equatorial line scribed on the
film were measured as accurately as possible and ¢, £,
and [, were obtained from ¢ = y(r?4y2)~%. £ for the
particular row line used was calculated or measured and
hence, from cot o = {/£, «,, &, and «, were found. As
the differences of & values are small (less than 5°), and
as infinitesimal rotations can be treated as vectors, the
resultant of three vectors of magnitudes (90°—a«,),
(90°—a,) and (90°—o«;) spaced 120° apart gave the
magnitude and direction of the necessary correction.
The direction of this correction was known to +24°
from the oscillation range. The angular correction was
resolved into two components parallel to the two arcs.
Adding the vectors, relating them to the positions of
the arcs, and resolving the resultant correction parallel
to the ares were done graphically. If the initial setting
of the lower arc were far from zero, correction for the
tilt of the upper arc would have to be applied, being
found by solving a spherical triangle. The corrections
obtained are not exact and two applications are necessary
for setting to 0-1°,

The method can of course be used for other than sixfold
axes if the rotation intervals are chosen appropriately.

Reference
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The direct-inspection method in systems with a principal axis of symmetry. By Fauvsro G.
Fumi, Institute of Theoretical Physics, University of Milan, Milan, Italy

(Received 21 April 1952)

The direct-inspection method (Fumi, 1952a)* can be used
to obtain directly the independent components of tensor
properties of matter only for symmetry groups in which
one can find Cartesian orthogonal coordinates that do not
transform into linear combinations of themselves under
the independent symmetry elements. The Cartesian
orthogonal reference frames usually applied for groups
with a principal axis C,(n > 3) (z|/to the axis, = and
y 1 to it) satisfy this condition only for n = 4, but
there are other frames which allow direct inspection in

* In this paper §3 (a) is somewhat too condensed to be
completely clear. Equations (9) and (10), like equations (6)
and (7), are relations between equations (3); when written
fully, equation (9) reads

tays= tyzzz 1'J.sz:y= t4:4:zy= tyz:z= taya.

The last sentence of § 3 (a) states the identity of the scheme
of independent components of the axial and polar third-order
tensors for symmetry O with the scheme of the axial third-
order tensor for symmetry T'y.

Table 1
Finite groups with  Generating
a principal axis elements Possible choices of x and y
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C, = binary axis | Cp; o0y(0)) = symmetry plane||(] )Cy;
2 = inversion.
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Table 3. Fourth-order tensor pg(p,q = 1, 2, 3, 4, 5, 6)
Polar, Polar Axial Polar Axial Axial Polar Axial Axial Axial Polar Axial Axial
axial D a——  ——t ———

c, Cs O3 Cy Cse Dy, Dya D, Cw CanCeCgn Cg Can Dy, Cev Dg,Dgn,Dyp Dy Cev
Any 2|0 2liCy 2|05 |G, zl|Cy  2lIC;  2]|C5, 05 2l|Cy 2{|Cy ][O 2]|Cq a||C, z||C;  2||Cs

yz|loy 2||Cy 2||Cy  yzl|ow 2|C; yzlioy  21Cy, Cy  2l|Cg  y2llo:

—_————

11 11 11 0 11 0 0 11 0
12 12 12 0 12 0 0 12 0
13 13 13 0 13 0 0 13 0
14 14 14 0 0 14 14 0 0
15 15 0 15 0 15 0 0 0
16 16 16 16 0 0 0 16
21 12 12 0 12 0 0 12 0
22 11 11 0 11 0 0 11 0
23 13 13 0 13 0 0 13 0
24 —14 —14 0 0 —14 —14 0 0
25 —15 0 —15 0 —15 0 0 0
26 —16 0 —16 —16 0 0 0 —16
31 31 31 0 31 0 0 31 0
32 31 31 0 31 0 0 31 0
33 33 33 0 33 0 0 33 0
34 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0
41 41 41 0 0 41 41 0 0
42 —41 —41 0 0 —41 —41 0 0
43 0 0 0 0 0 0 0 0
44 44 44 0 44 0 0 44 0
45 45 0 45 45 0 0 0 45
46 46 0 46 0 46 0 0 0
51 —46 0 —46 0 —46 0 0 0
52 46 0 46 0 46 0 0 0
53 0 0 0 0 0 0 0 0
4 —435 0 —45 —45 0 0 0 —45
55 44 44 0 44 0 0 44 0
56 41 41 0 0 41 41 0 0
61 —16 0 - 16 —16 0 0 0 —16
62 16 0 16 16 0 0 0 16
63 0 0 0 0 0 0 0 0
64 —15 0 -15 0 —15 0 0 0
65 14 14 0 0 14 14 0 0
66 3(11—12) 3(11—12) 0 3(11—-12) 0 0 3(11—12) 0

The axial tensor vanishes identically for symmetries Cy;, Dyq, Cgn and Dgp.

C5, C3; and Cj,. The remaining groups with a principal
axis cannot be treated directly by this method.

Direct inspection can be used, however, to derive the
independent tensor components in all groups with a
principal axis from the independent components in the
corresponding group C,. Indeed, the usual Cartesian
orthogonal coordinates with z||C, do not transform into
linear combinations of themselves under the generating
elements to be added to the group C, to obtain the other
groups with the same principal axis, if one fixes properly
z and y (Table 1).

The independent Cartesian orthogonal components in
the groups C, can be obtained by imposing invariance
on each component (Hermann, 1934), conveniently re-

placed by the corresponding coordinate product (Fumi
1952a; Juretschke 1952): in the equivalentt frames with
z]|C,, the algebra is fairly simple since only z and y
transform among each other. Ob- viously the scheme
for symmetry Cq can always be obtained by direct in-
spection of the scheme for symmetry C; since Cg is
equivalent to Cy, for polar properties of even order or
for axial properties of odd order, and it cannot distin-
guish polar and axial properties.

As a simple application we treat here a (polar or axiat)

t The reference frames which are not distinguishable in
their relations to the symmetry elements of a given group are
equivalent for it.
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fourth-order tensor pg(p, ¢ = 1, 2, 8, 4, 5, 6) in all trigonal
and hexagonal groups: an higher order tensor is treated
elsewhere (Fumi, 1952b). The equations of invariance
for symmetry C, are obtained in Table 2: for instance,
the equation for the 2%yz component reads z%yz =
—})/32%x —~}2%yz. Direct inspection of the common
scheme for symmetry C; (Table 3) gives the schemes of
the polar and of the axial tensor pg for symmetries
Cyployy v - —2,y > y,2—>2) and Cglop, 2, ¥y~ ¥,
z — —z); for the polar tensor, the independent com-
ponents for symmetry C; which are odd in z or in z vanish
in Cg, and in Cy; respectively, while for the axial tensor
these components are the only non-vanishing ones.
Direct inspection of the common scheme for symme-
try C, yields in a similar fashion the schemes for sym-
metry Cg,, and direct inspection of the common scheme
for symmetry D; provides the scheme of the axial
tensor for symmetry Dg;. The independent components
of the axial tensor coincide with those of the polar tensor
for symmetry Dg, as for the other groups which do
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not contain improper rotations (Fumi, 1952 a). The
independent components of the polar tensor are the
same in symmetry groups which differ by the inversion
(Fumi, 1952 a).

The results for the polar tensor pg can be compared
with the schemes of photoelastic constants (Szivessy,
1929; Bond, 1943; Mason, 1950; for Cg, Cj;, Cg;, Cs and
Cen seo, however, Bhagavantam, 1942).
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Globulite units in protein crystals?* By Dororay WriNca, Department of Physics, Smith College,

Northampton, Mass., U.S.: A.

(Received 21 April 1952)

It has recently been remarked (Wrinch, 1952a) that
certain findings regarding residue numbers favor the
possibility that the horse hemoglobin and myoglobin
structures and the insulin and ribonuclease structures are
particles made up of various complements of molecules
in various arrays, all the molecules having skeletons of
NCC polymers of similar type. In this note we study this
hypothesis in the light of certain intensity data obtained
in X-ray crystal studies which are recorded in the
literature (Perutz, 1949; Boyes-Watson, Davidson &
Perutz, 1947; Kendrew, 1950). In particular we look for
evidence for or against the hypothesis (Wrinch, 1937)
that such skeletons, if present, are globulite (and indeed
cage-like) in character, not differing grossly in dimensions
in various directions.

For the monoclinic horse methemoglobin crystal, the
mean intensity curve as a function of distance from the
origin (Perutz, 1949) and the (hOl) intensities (Boyes-
Watson et al., 1947) are recorded. To test the globulite
hypothesis, or any other hypothesis as to shape, it is of
course fruitless to study the mean intensity curve in
isolation. However the (h0l) intensities throw light on the
situation, when studied in conjunction with it. Perutz’s
(1949) mean intensity curve (small curve in Fig. 1)
represents the spherical smoothing of all the intensities.
Let us then construct, from the (hOl) intensities, the
‘mean intensity curve as a function of distance from the
origin, thus circularly smoothing these co-planar intensities
(last curve of Fig.1). We remark that sufficiently far
from the origin there is a general resemblance between
the two curves. Both descend from relatively high values
t0 a minimum at c. 0-17 A-! and both subsequently
develop a maximum at c. 0-22 A-1. So far as it goes,
this situation is in accord with the hypothesis that the

* This work is supported by the Office of Naval Research.
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Fig. 1. Inset curve: Perutz’s means intensity curve for the
horse methemoglobin crystal as a function of distance from
the center (Perutz, 1949). Lowest curve: the circularly
smoothed intensity function for the same crystal, calculated
from the given (h0l) intensities (Boyes-Watson et al., 1947).
Upper four curves: the circularly smoothed intensity func-
tions for the horse myoglobin crystal calculated from the
given intensities on central planes normal to a, ¢, ¢’ and b
respectively (Kendrew, 1950).



